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Abstract—While research has shown that the agile chip design
methodology is promising to sustain the scaling of computing
performance in a more efficient way, it is still of limited usage
in actual applications due to two major obstacles: 1) Lack of
tool-chain and developing framework supporting agile chip
design, especially for large-scale modern processors. 2) The
conventional verification methods are less agile and become a
major bottleneck of the entire process. To tackle both issues,
we propose MINJIE, an open-source platform supporting agile
processor development flow. MINJIE integrates a broad set
of tools for logic design, functional verification, performance
modelling, pre-silicon validation and debugging for better
development efficiency of state-of-the-art processor designs.
We demonstrate the usage and effectiveness of MINJIE by
building two generations of an open-source superscalar out-of-
order RISC-V processor code-named XIANGSHAN using agile
methodologies. We quantify the performance of XIANGSHAN
using SPEC CPU2006 benchmarks and demonstrate that
XIANGSHAN achieves industry-competitive performance.

Keywords-agile development; open-source hardware; micro-
architecture;

I. INTRODUCTION

In the data-driven world, chip architects need to carefully

balance the conventional design metrics such as performance,

power and area (PPA), against various metrics such as time-to-

market and limited budgets when designing high performance

processors. This requires novel methods and tool flows that

oversee and facilitate the entire process.

Over the past few years, agile chip design methodologies

have attracted attention from both academia and industry,

because these approaches could potentially limit the large

engineering costs and reduce the long design cycles for chip

development while maintaining reasonable PPA specifica-

tions [1] [2] [3]. There is an increasing number of researches

demonstrating the usage of agile methodologies in designing

CPU cores [4] [5] [6], System-on-Chips [7] [8] and hardware

accelerators [9] [10]. In addition, several agile development

frameworks [7] [11] [12] [13] are proposed to support rapid

chip design, simulation and testing.

Despite the benefits, agile design methodology is still

of limited usage, especially for practical modern designs.

To further investigate the issue, we talk to chip archi-

tects, research scientists and lead engineers from twelve

hyperscalers and major chip companies across multiple

sectors, including data center, smartphone, communication

and automobile. According to this survey, we summarize two

common concerns regarding the agile methodology:

1) Agile approaches are not quite ready for complicated
processors. Although a number of chips have been built using

agile approaches, most of them are research prototypes and

are relatively small or less complicated designs [1] [14] [15].

It is not clear if similar approaches can be directly applied

to large-scale designs such as modern processors.

2) The verification process is still less agile. While

modern verification methodologies such as UVM [16],

constrained random [17] [18] and formal methods [19] [20]

are widely adopted to accelerate the process, verification

is still a major bottleneck of the entire chip development

process, especially for large designs [21] [22] [23]. Existing

frameworks for agile development focus more on rapid

prototyping instead of verification. Therefore more tools

are required to support the entire agile workflow.

In this paper, we aim to address both concerns. Towards

the first concern, we propose MINJIE, a platform that

integrates a rich set of agile development tools for logic

design, functional verification, performance modeling, pre-

silicon validation and debugging, in order to further improve

development efficiency of state-of-the-art processor designs.

To demonstrate the usage and capability of this platform,

we develop XIANGSHAN, a high performance superscalar

out-of-order RISC-V processor. With the support of MINJIE,

we manage to finish the first generation of XIANGSHAN in

ten months. XIANGSHAN was taped out at a frequency of



1.3GHz on a 28nm CMOS process in July 2021, achieving

7.01 on SPEC CPU2006 tested using real chips at 1GHz.

We then optimized the second generation in an agile way,

which is scheduled to be taped out at 2GHz on a 14nm

CMOS process in Q4 2022. Experimental results show that

the second generation can achieve a normalized score of

10.06/GHz on SPEC CPU2006 using representative program

fragments on the RTL-simulation platform.

Towards the second concern, we further investigate the

bottlenecks of the verification workflow and enhance the

conventional verification methodologies by proposing agile

tools and a novel Diff-Rule based Agile Verification (DRAV)
mechanism which together form the development platform

MINJIE.

1) To reduce the verification overhead, DRAV relaxes the

strict equivalence of testing outcomes to checking specific

diff-rules, forming an N-to-1 correspondence between the

designs-under-test (DUTs) and reference model (REF). The

key insight is that different outcomes under diverse micro-

architectures may be legal under the design specifications.

DRAV abstracts architectural behaviors as diff-rules. They

are defined according to specifications that are deterministic

and persistent across different processor designs. Therefore,

different designs under the same design specification can be

verified by one REF with the same set of diff-rules.

2) To identify the sources of behavioral non-determinism

and specify the diff-rules for RISC-V processors, we propose

a new verification framework DiffTest composed of diff-rule

checkers and information probes. The key insight is to embed

information probes into high-level HDL (e.g., Chisel) designs

and use them to convey information to the diff-rule checkers.

3) To address the critical performance overhead introduced

by debugging information in RTL-simulation, we propose a

lightweight simulation snapshot technique (LightSSS) for on-

demand transitions between normal-mode and debug-mode.

LightSSS efficiently creates circuit-agnostic snapshots by

storing only diffs with the copy-on-write mechanism.

This paper makes the following contributions.

• A platform MINJIE supporting agile processor devel-

opment flow, with newly developed tools for logic

design, verification, validation, performance modeling

and debugging for large-scale digital circuit design such

as high performance processors.

• We build two generations of a superscalar out-of-order

RISC-V processor code-named XIANGSHAN with an

industry-competitive performance by adopting agile

methodologies provided by MINJIE.

• Both MINJIE and XIANGSHAN are open-sourced to

facilitate future research on micro-architecture and

system-level designs using agile methodologies.
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Figure 1. Different ways of building high performance processors. (a)
Traditional design and verification. (b) Agile design with conventional case-
by-case verification. (c) Agile design and verification as generators.

II. BACKGROUND

A. Agile and Open-Source Hardware

Agile chip development and open-source hardware have

gained ever-growing attention over the past years. The goal of

agile and open approaches is to reduce significant engineering

costs and long design cycles for chip development. For

example, Lee et al. [1] adopted an agile development

approach for building 11 RISC-V microprocessors, which

were taped out on 28-nm and 45-nm CMOS processes in

five years. With open-source hardware design tools, five

undergraduate students [14] [24] are able to design a Linux-

compatible RISC-V processor on 110-nm in four months.

However, the agile and open methodology is still unrecog-

nized for high performance and complicated designs due

to the lack of high-quality hardware projects with agile

development tools. BOOM [6] and XT910 [25] are two

of the highest performance open-source RISC-V processors,

but their performance still lags behind commercial x86 and

ARM processors. Besides, the development and verification

efforts on these processors are not fully revealed to the public.

Therefore, the capability of agile chip development is still

not fully demonstrated to convince the industry community,

which prevents the agile methodology from being widely

adopted.

B. Processor Functional Verification

The common practice of processor verification is to build a

co-simulation framework to compare the equivalence between

the outcomes of the design-under-test (DUT) and a reference

model (REF), as shown in Figure 1. The outcome can be

configured with various contents depending on the verification

goals. For example, to ensure ISA-level compliance, the

outcome is defined as the architectural states of a processor,

such as the general-purpose registers and the program counter.

The underlying framework compares the outcomes of a DUT

with those from an instruction set simulator (ISS), which

serves as the golden model of the target ISA.

However, this strict equivalence testing strategy must

address the issue of non-deterministic behaviors affected by

the micro-architectural implementation details of the design.
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Figure 2. Agile workflow of MINJIE and the related tools.

For example, imprecise exceptions [26] and asynchronous

interrupts [27] may unpredictably break the normal instruc-

tion flow of the processor. The state-of-the-art co-simulation

framework Dromajo targets deterministic architectural states

by forcing the REF to take the same interrupts as DUT [27].

However, for reference models without micro-architectural

information, there exist more scenarios of non-determinism,

and these events usually cause a divergence between the

outcomes of DUT and REF. It is also a widely accepted

challenge in formal verification and software testing [28]

[29] [30], requiring a large state space to be maintained and

explored. We demonstrate addressing this issue of the non-

determinism in co-simulation environments in Section III-A.

C. Verification Framework

Figure 1(a) illustrates the traditional design and verification

interactions. Given the same design specifications, RTL

engineers build a processor in Verilog, while verification

engineers develop corresponding reference models for various

parts and levels of the processor in other languages (e.g.,

SystemVerilog, C/C++). The Verilog design (DUT) and the

REF are put into a verification framework such as UVM to

check the equivalence between their outcomes.

While traditional verification focuses on a specific de-

sign instance, agile development encourages maintaining

generators. As shown in Figure 1(b), the advent of agile

design involves high-level HDLs that frequently generate

updated design instances. This new design paradigm brings

two challenges on the setup of the reference models and their

interactions with the DUT. First, the REF needs to cover the

different micro-architecture-dependent details across different

iterations of REF and avoid mismatches between their

outcomes. Second, minor modifications in high-level HDLs

may lead to significant changes in Verilog and substantially

break the original verification code. Therefore, verification

engineers suffer from agile development. We address these

two issues in Section III-B.

D. RTL-Simulation and Debugging

Hardware designs require a long time of RTL-simulation

through the verification process. Common approaches include

software-, FPGA-, and emulator-based RTL-simulation.

FPGA runs the fastest (tens of MHz) and is important for

hardware prototyping. While a lot of works have addressed

the issues of scalability [31] [32] [33], debuggability [34]

[35] [36] [37] [38], and long synthesis time [39], FPGAs

still need to be improved for large-scale designs [40] [41]

[42].

Emulators such as Cadence Palladium [43], Mentor Ve-

loce [44], and Synopsys Zebu [45] can simulate large circuits

at a speed of MHz with full visibility and good debuggability.

However, they are pretty expensive and thus difficult to deploy

at scale by both academia and industry.

Software-based RTL-simulators [46] [47] are the most

commonly used tools and provide full visibility of the

simulated circuits. However, the software approach runs at

a speed of KHz for large-scale designs and becomes even

slower when necessary debugging information is enabled

such as the waveform and logs (12× performance reduction

in our case on XIANGSHAN). It is of great significance to

address the debugging efficiency for software-based RTL-

simulators as they are being used for almost all hardware

projects. Section III-C demonstrate our approach to speed

up the debugging process.

E. Performance Evaluation

Accurate pre-silicon performance evaluation and validation

are important for high performance processors. It is also of

critical importance to evaluate a processor design with an

agile approach because it affects the efficiency of feature

exploration. There are various ways of feature exploration

and performance evaluation.

Architectural simulators [48] [49] are widely used for

design space exploration and performance evaluation due

to their high running speed and programming simplicity.

However, there is a huge gap between the performance



and architecture of the open-source version of GEM5 and

state-of-the-art high-performance processors. According to

our experiments, a roughly XIANGSHAN-parameter-aligned

GEM5 model achieves ∼7/GHz on SPEC CPU2006 at 2GHz,

which is ∼30% less than XIANGSHAN and ∼70% less than

the Apple M1 [50]. For better accuracy, companies have

to maintain independent teams for architectural simulators

to align with the micro-architecture of the real RTL model,

which requires a huge investment of human resources.

Performance evaluation on RTL models relies on cycle-

accurate RTL-simulation, with a typical simulation speed

of KHz on software and MHz on FPGAs. However, it still

takes more than 150 hours for XIANGSHAN to finish SPEC

CPU2006 at 50MHz on a single FPGA, resulting in a one-

week iteration cycle that does match the agile development

requirements. Besides, unlike the real chips, FPGAs have

the issue of inconsistent frequency ratio between the CPU

(50MHz) and DDR4 (up to 2400MHz) [51], making the

performance results on FPGAs unrealistic. Thus, it’s of

significant importance to investigate how to accurately and ag-

ilely evaluate the pre-silicon performance of a processor. We

demonstrate a software RTL-simulation based performance

evaluation workflow in Section III-D.

III. TOWARDS AN AGILE WORKFLOW USING PLATFORM:

MINJIE

MINJIE is an open-source platform designed to support

the agile chip development workflow, integrating a rich set

of existing and newly developed tools and tool-chain for

logic design, functional verification, performance modeling,

validation and debugging, as shown in Figure 2. In this

section, we detail the functionalities and design methods of

the representative tools for agile verification, debugging, and

performance evaluation, together with the description of the

entire workflow for agile chip development.

A. Diff-Rule based Agile Verification (DRAV)

Functional verification is key to ensuring successful chip

development. The key to function verification though, is to

build reference models (REFs) that can properly reflect the

design specifications.

An intricate example is shown in the top part of Figure 3.

According to the RISC-V instruction set manuals, any store

(PTE Write, Store Retire) before an explicit sfence.vma
instruction may or may not take effect (Store Complete) in

the virtual address translation process (TLB Page Walk). This

flexibility makes the behavior of translation look-aside buffers

(TLBs) and the instruction execution (Normal Commit or

Page Fault) look non-deterministic from the outside, whereas

both behaviors are legal. As for RISC-V implementations

with a store queue, whether the TLB receives the PTE updates

depends on whether the PTE store leaves the store queue to

the memory subsystem. However, since the REF does not

have such micro-architectural states, there will be a possible

behavioral divergence between the DUT and REF.

Therefore, the verification strategy must address the micro-
architecture dependency problem: when the REF is lack of

enough micro-architectural states and behaves differently

with the DUT, the verification strategy should determine

whether this mismatch is due to true bugs or false positives.

The traditional model as shown in Figure 1(a) tackles

this issue by setting up various simplified REFs that are

specifically targeted on certain parts of the design. Given

a processor Pi, behaviors of both DUT and REF can be

described as how the micro-architectural state sPi ∈ SPi

changes upon an event e ∈ E, where SPi is the micro-

architectural state space of processor Pi, and E is an event

space, including instruction commit, exception, interrupt, etc.

That is, both DUT and REF define a mapping RPi
from the

state space and event space to the state space:

RPi
: SPi

× E −→ SPi
.

Verification is to check the equivalence of mappings defined

by DUT and REF, which implies an 1-to-1 correspondence
between the DUT and the REF. This model is useful for de-

signs such as commercial processors, with a long production

life-cycle where the verification IPs and frameworks can be

reused throughout the entire project.

Nevertheless, maintaining the 1-to-1 correspondence be-

tween REF and DUT can be difficult with a short devel-

opment cycle, rapid feature changes and limited resources,

commonly seen in the agile development model as shown in

Figure 1(b).

Rethinking the principle of verification, we argue that a

given design specification can lead to diverse implementa-

tions. Therefore, once the behavior of a DUT satisfies the

definition of specifications, the implementation details are

allowed to be diverse and the requirement of strict equivalence

can be relaxed.

Following this principle, it is feasible that DUTs with

different implementation details can be verified by the

same REF if their behaviors are conforming to the same

specification. Given a specification P such as the instruction

set, one can build a REF according to P that defines the legal

architectural state transitions starting from sP ∈ SP with an

event e ∈ E, where SP is the architectural states defined

by P . Due to the existence of diverse micro-architecture

dependent behaviors in P , for given current state sP and e,

the REF R outputs a set of next states. That is,

R : SP × E −→ 2SP ,

where 2SP is the power set of SP . Given a set of processors

{P1, ..., Pn} following P , it is straightforward to find the

mapping fPi from processor micro-architectural state to

architectural state: fPi : SPi −→ SP . Thus, for any

Pi, i ∈ {1, ..., N}, verification of processor Pi is to check

whether fPi
(RPi

(sPi
, e)) ∈ R(fPi

(sPi
), e). This forms an
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Figure 3. An illustrative example of the micro-architecture dependent behavior in TLBs with the MINJIE solutions. Invalid PTEs are allowed to be cached
in TLBs, resulting in a page fault when TLBs speculatively access the page table (TLB Page Walk) before the Linux kernel allocates with a valid page
(Store Complete).

N-to-1 mapping between DUTs and REF. Since only one REF

R is maintained and R is simpler than {RPi
|i ∈ {1, ..., N}},

the verification overhead is reduced, as shown in Figure 1(c).

Based on the observations, we leverage diff-rules to

abstract legal behaviors defined in specifications and deal

with non-determinism in verification. A diff-rule r ∈ R is

deterministic and stable across different hardware implemen-

tations with the same design objectives. We propose a novel

Diff-Rule based Agile Verification (DRAV) mechanism that

enhances conventional verification methodology by providing

both the verification infrastructures and a real implementation

for RISC-V processors, as shown in Figure 3. The DRAV

mechanism consists of diff-rules R, information probes fRi

and rule checkers that can be freely used by verification

engineers to express their expectations of the outcomes of

the DUT and REF. These components are carefully designed

to achieve higher efficiency in the context of open-source

and agile hardware development.

B. DiffTest: DRAV for RISC-V Processors

1) Overview: DiffTest is a co-simulation based verification

framework as shown in Figure 4, it accelerates the verifi-

cation convergence by adopting the DRAV methodology

and relaxing the non-critical equivalence checks from design

specifications. Specifically, DiffTest provides flexibility to add

diff-rules and reconfigure the reference model on-the-fly, thus

being scalable to support multiple designs simultaneously.

DiffTest adopts a co-simulation mode where a DUT and

a REF can run simultaneously cycle by cycle and are

synchronized by diff-rules in the form of probes and checkers.

In every cycle, the DUT outcome (e.g. instruction commit

DUT Core 0
Probe

Probe

Rule Checker

Rule Checker

REF 0 ISA Simulator

Global Memory

DUT Core 1
Probe

Probe

Rule Checker
REF 1 ISA Simulator

Figure 4. Components of DiffTest.

information) is obtained by probes and conveyed to checkers.

If there is only one rule for this outcome, the REF will not

receive any hints, and hence the outcome is directly used for

the equivalence checking. If there are multiple legal rules

and the DUT outcome matches one of them, the REF will be

triggered to perform the same operations as the DUT. Once a

mismatch occurs, the checking mechanism identifies potential

issues of the DUT and aborts the RTL-simulation. DiffTest

enables rapid refining of the micro-architecture-dependent

behavior of a REF on-the-fly, thus significantly reducing the

REF implementation cost.

2) Non-deterministic Behaviors and Diff-Rules: The key

challenge of devising diff-rules is identifying sources of

non-deterministic micro-architecture dependent behaviors.

Fortunately, it affects only verification efficiency rather than

correctness. The more sources are identified for devising

rules, the fewer details in REFs are required for verification.

Therefore, the efficiency can be continuously improved by



adding more diff-rules. However, one needs to balance the

tradeoff between the number of diff-rules and the setup cost

of REFs and the framework.

To identify the non-determinism sources on machine-mode

CSRs in RISC-V instruction set, we investigate the RISC-V

privilege specification and devise at least 120 rules, which

are relatively simple to distinguish and set up as they mostly

affect the CSR read/written values only.

Next, we present several representative sources of non-

determinism in the ISA- and bus-level verification of multi-

core high-performance processors. It is worth noting that

the attempt to cover more diff-rules of processors is never

enough, since the increase of rule checking coverage only

increases the confidence of correctness but never ensures the

correctness. Instead, agility addresses the verification issue

by increasing the workflow efficiency and thus allows more

verification trials within a fixed time interval.

a) Speculative virtual address translations: Figure 3

shows the non-deterministic behavior of the TLB. Specifically,

Linux chooses not to execute a memory-barrier instruction

after allocating a new physical page to avoid flushing

instructions until a page fault exception [52]. In most cases,

the in-memory page table entries (PTEs) are updated quickly

after the retirement of the store instructions. However, if

the store operation that updates a PTE does not take effect

when the TLB accesses the memory, a memory instruction

accessing the page will trigger a page fault exception, which

brings the processor out of the normal execution to the

exception handler. Two diff-rules are used to address this

issue: (1) The DUT may trigger a page fault exception even if

the REF does not trigger; (2) DUT and REF should have the

same architectural states after executing the same instruction.

b) Cache hierarchy and multi-core scenarios: Load

and store instructions may have different outcomes due to

the exponential interleaving space of concurrent memory

accesses, making it infeasible to build a sound and complete

multi-core REF for co-simulation with a multi-core processor.

While the memory consistency model defines a large set of

legal software-visible behaviors, micro-architectural details

determine how certain memory operations are ordered.

We leverage diff-rules to prune the astronomically large

interleaving space, and build a co-simulation framework for

multi-core processors with simple single-core REFs.

As an example, the store buffer is a source of divergence

between the DUT and REF or non-determinism of the

DUT. Under the RISC-V weak memory order (RVWMO),

load instructions are allowed to first bypass the value from

the private store buffer, and access the global memory if

the bypass fails [53]. A naive multi-core co-simulation

requires maintaining a correct store buffer in the REFs, unless

disagreements between the DUT and REF will frequently

break the co-simulation flow. In DiffTest, we devise a diff-

rule from the RVWMO specification that allows DUTs to

maintain the global memory and updates the REF memory

when they disagree. It introduces the Global Memory that

records the store requests that enter the cache hierarchy in

DUT. Data correctness is checked by both Global Memory

and local memory of single-core REFs. When the single-core

REF executes a load with a different value from the DUT,

DiffTest accesses the same load address in Global Memory

to check whether this load value is possibly written by other

hardware threads. If so, the value will be updated to both

the local memory and the destination register of the load

instruction in the single-core REF.

Besides the RISC-V ISA-level diff-rules and co-simulation,

DiffTest is further enhanced with diff-rules for the consistent

cache hierarchy. We observe that caches can be regarded

as black boxes, ignoring internal implementation details. As

long as we monitor the transactions between caches and cores

with some additional historical information, the correctness

of the caches can be checked. We devise two major categories

of rules for cache consistency. (1) To define legal transactions

received in different situations, a series of rules are set up

according to the bus protocol specification. (2) A permission

scoreboard is maintained to track the permission of each data

block according to the cache coherence protocol.

c) More sources of non-determinism: We selectively

choose some micro-architectural components that are compli-

cated to implement on the system level REFs but relatively

unimportant and devise diff-rules to abstract their behaviors.

For example, we avoid in REFs the details of most memory-

mapped IO devices, sources of external interrupts, reservation

sets for the load-reserved/store-conditional (LR/SC) instruc-

tion pair [53], macro-instruction fusion [54], performance

counter reads, and so forth. In these cases, we devise relaxed

diff-rules to achieve agile verification, where the DUT is

trusted to trigger the corresponding events. The architectural

states afterward are checked by DiffTest assuming the REF

is being forced to trigger the same events. For example, SC

instructions are allowed to fail on a timeout between the

LR and SC. Due to its dependence on micro-architectural

states, a timeout failure of the SC instruction on DUT will

be trusted, while the REF is notified by this event to refine

its behavior with a failure as well.

To leverage diff-rules in verifying the processors, one

should be careful to ensure the soundness of diff-rules and the

applicability to various processor implementations. In both

the page-fault and SC-failure examples, DiffTest implements

more checkers to ensure verification quality. The number of

forced page-faults and SC failures with their positions in

the program are tracked and asserted not to repeatedly occur

to avoid false negatives. Furthermore, to efficiently verify

these components, module-level DiffTest with fine-grained

diff-rules is used instead. For example, diff-rules based on

the design specification of TLBs are used to verify the TLB

module, forming a multi-level verification plan.

3) Information probes: Towards the second challenge of

broken verification code caused by high-level HDLs, DiffTest



is decomposed into diff-rule checkers and the probes to

automate the extraction of the required information. As shown

in Figure 3 and Figure 4, a probe is a piece of logic put

inside a processor design.

Traditionally, necessary verification information is ex-

tracted by the monitor or adapter under the widely accepted

universal verification methodology (UVM) [16]. Conven-

tionally, they are written manually by verification engineers

who know the verification requirements and look into the

design to find the signals of interest. However, under the

agile development methodology, hardware designs may

frequently change along with a large number of internal signal

definitions, causing repetitive and meaningless porting work

by the verification engineers. Instead, probes are intentionally

written by designers who know the implementation details

and undertake the responsibility of advancing the design.

High-level HDLs like Chisel have been widely adopted

to accelerate the hardware design process. As shown in the

Probe Definition part of Figure 3, probes are injected into a

processor design and implemented as native interfaces in the

same high-level HDL as the design. With the support of the

code auto-generation feature of Chisel, a probe is defined as

a bundle of signals with their directions and types, and the

instantiable module is automatically generated according to

the definition of the bundle. When the verification process

requires some more information, the only thing to do is

defining the format of the required bundle of signals. Then the

interface can be generated and used for the communication

between design and verification.

To maintain the compatibility of probes between various

designs and keep a low maintenance cost as the design

evolves, probes are designed to be the basic building blocks

of the verification information. For example, superscalar

processors may execute and commit more than one instruction

per clock cycle. To verify these processors, a verification

framework requires the information for multiple instructions

that commit at the same clock cycle. In our design, the

information probe for instructions is defined as the informa-

tion extractor for only one instruction and is expected to be

instantiated more than once in a superscalar processor. In

this way, different processors share the same basic probes but

have different usages of the probes. Furthermore, some static

design information is implicitly conveyed to the verification.

The number of function calls of the instruction probe indicates

the commit width of the superscalar processor under test.

Information probes are inserted into a processor design

at the design phase and extract detailed information during

the RTL-simulation. The information is used for not only

co-simulation and verification in DiffTest but also more

debugging tools. For example, ArchDB is an SQLite-based

database storing and parsing information obtained by probes,

where tables are automatically generated by the probe

definitions. ArchDB can be further used to filter and visualize

the events and transactions for agile debugging. Thus, with
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Figure 5. Various ways to obtain debugging information. (a) Always
running RTL-simulation in debug mode. (b) The state-of-the-art method
with two RTL-simulation instances running successively. (c) RTL-simulation
with circuit snapshots. (d) RTL-simulation with LightSSS.

the introduction of probes, the information gap between

design and verification is mitigated.

C. LightSSS: On-Demand Debugging

1) Overview: Debugging requires information such as the

waveform and logs that slow down the simulation speed, as

stated in Section II-D, To address this issue, we propose

LightSSS, a lightweight simulation snapshot technique for

on-demand transitions between fast-mode and debug-mode

(debugging information enabled).

Figure 5 demonstrates various ways to obtain debugging

information. As shown in Figure 5(a), due to the extra

debugging information acquired, RTL-simulation in debug

mode is usually much slower than in normal mode, regardless

of the format of the information. An example of XIANGSHAN

shows that, when waveform is enabled, the RTL-simulation

speed drops to ∼8.5%, whereas the export of text logs causes

a ∼55% decrease of simulation speed as well.

As shown in Figure 5(b), the state-of-the-art debugging

method [35] runs two identical RTL-simulation instances in

parallel with one instance (S0) launched N seconds later than

the other (S1). When S0 reports a bug, it notifies S1 to turn

on the debugging information like waveform and continue

the simulation until the bug occurs. Since S1 is identical

with S0 except for the delay of N seconds, when S1 reports

the same bug, we can obtain the debugging information for

the last N seconds (region of interest, ROI) of simulation.

This method avoids simulating in debug mode most time but

requires doubled computation resources.

2) SSS by MINJIE: Another existing method to focus

on the ROI is taking snapshots for the RTL-simulation and

restoring a recent snapshot on-demand, as shown in Figure

5(c). A snapshot is generally created by concatenating the

circuit states and other necessary simulation information

in the form of a file image containing all the required

information. However, frequently dumping snapshots cause

serious performance degradation, 10% to 20% reported by the

state-of-the-art RTL-simulation snapshot tool LiveSim [55].

MINJIE also designs a circuit-dependent snapshot format SSS



with a performance overhead of 17%. Each snapshot contains

the entire circuit state of DUT generated by the savable
option of Verilator [56] and other verification states required

by DiffTest, such as the simulated memory in the REF. The

snapshot overhead will even grow as size of the simulated

memory ranges from 256MB to 16GB, resulting in serious

pressure on either the I/O or memory depending on whether

snapshots are stored on disks.

3) Lightweight simulation snapshot: To address the issue

of snapshot efficiency, we make a key observation that most

contents of the DUT memory remain unchanged between

two snapshots. So instead of storing a whole snapshot, we

can record only the differential states between two RTL-

simulation snapshots. This observation motivates us to use a

diff-based in-memory snapshot.

In this paper, we propose a Lightweight Simulation
Snapshot (LightSSS) technique. As shown in Figure 5(d),

during the RTL-simulation, snapshots are created periodically

every N cycles. Each snapshot only stores its unique states

(differential) and shares identical states with other snapshots.

Because we only care about the region around a bug, we only

reserve the most recent two snapshots and drop the earlier

ones to reduce the overhead. When an error is reported, the

RTL-simulation process notifies the older snapshot to replay

the simulation in debug mode until the error is reproduced.

In this way, the snapshot instance only needs to replay as

most 2N cycles to acquire the debugging information.

Portability is another issue of SSS. External models in

C/C++ that are linked to the simulation require manual saving

and restoring of the details. It is difficult to port them because

of the high complexity of internal states and the requirements

of case-by-case implementations. We make a key insight of

LightSSS that the software-based RTL-simulation is a process

running on the Linux kernel, and utilities from the kernel

can be used for circuit-transparent snapshots.

Instead of taking snapshots of simulated circuits, we take

snapshots of the RTL-simulation process with a system call

of the Linux kernel. LightSSS periodically calls fork()
from the RTL-simulation process and treats the forked

process as a snapshot. When the RTL-simulation process

continues and updates memory contents, the Copy-on-Write

(COW) technique [57] inherently serves as diff-based storage:

the operating system allocates physical pages for only the

modified pages, leaving unmodified pages shared between

processes. By using the system call to create snapshots, we

avoid the details of the simulated circuits and generalize the

snapshots method to be transparent over any DUTs and other

external functional models, such as the DRAMsim3.

Table I shows the comparison between different snapshot

techniques for software RTL-simulation. Compared with

existing general snapshots like CRIU [58], LightSSS is

designed and tuned for agilely debugging the RTL-simulated

hardware with less overhead due to the in-memory nature.

Compared with snapshot tools for RTL-simulation, LightSSS

Table I
A COMPARISON BETWEEN DIFFERENT SNAPSHOT SCHEMES FOR

SOFTWARE RTL-SIMULATION.

In-Memory Incremental Circuit-
Agnostic

CRIU [58] × � �
Verilator [56] × × ×
LiveSim [55] � × ×
LightSSS � � �
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Figure 6. Simulation time when LightSSS is enabled with different snapshot
intervals or disabled.

causes far less overhead because of the incremental and

circuit-agnostic implementation using fork().

4) Evaluation: There are two major concerns about the

overhead of LightSSS: (1) How much extra run-time is

introduced by the fork() system call? (2) How often does

the simulation process diverge, and how much time is it

to lazily copy the modified pages? To address these two

concerns, we perform an evaluation on both single-core

XIANGSHAN and the larger dual-core XIANGSHAN.

We simulate a single-core XIANGSHAN to run ten it-

erations of CoreMark (∼5.5 minutes), and a dual-core

XIANGSHAN to boot an SMP Linux (∼ 30 minutes). The

RTL-simulation speed on the AMD Ryzen 5950X processor

is 5.1KHz for single-core (8.09M lines of C++ generated by

Verilator) and 2.4KHz for dual-core (15.47M lines of C++)

XIANGSHAN using eight threads.

We first measure the overhead of the fork() system

call. Because of the COW, the duplication of the RTL-

simulation process only requires copying the process control

block, which stores the basic information of a process. As

expected, a fork() system call takes only 535 us. By

contrast, creating a snapshot with SSS in Section III-C2

takes 3.671 seconds.

The overhead of the COW mechanism can be evaluated

with different snapshot intervals, typically ranging from 1

second to 60 seconds. We run more than ten trials for each

interval size but still observe a minor performance variation

due to the 8-thread scheduling [59]. As demonstrated in

Figure 6, the simulation time is barely affected by either the

existence or the interval size of snapshots. The results show

that LightSSS introduces an order of magnitude lower over-

head than the-state-of-the-art state-of-the-art LiveSim [55]

that reports a 10% to 20% performance overhead.
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Figure 7. Overview of NEMU, which mainly shows the uop cache (left)
and the threaded code model (right).

D. NEMU: Fast Interpreter for Performance Evaluation

Pre-silicon performance evaluation is important for high

performance processors. Traces and checkpoints have long

been used in architectural simulators [60] [61] to increase

the simulation parallelism and speed up the evaluation

process. Towards an accurate and agile performance evalu-

ation approach, first MINJIE provides a high-performance

instruction set interpreter call NEMU (New EMUlator), which

demonstrates high flexibility to different instrumenting and

profiling tasks. Note that as an interpreter instead of a binary

translator, NEMU can also be used as an easy-to-develop

REF for DiffTest to reduce the verification overhead. Second,

MINJIE proposes a new architectural checkpoint format.

MINJIE can generate checkpoints efficiently with NEMU

and restore them with parallel simulation instances.

1) NEMU Design: Figure 7 shows the architecture of

NEMU. It is a threaded code [62] interpreter which inlines

all execution routines (the right part of Figure 7) into the

execution dispatcher. To achieve high performance, NEMU

adopts a lot of optimization techniques.

a) Optimizing Fetch and Decode by uop cache:
Different from an instruction cache which is used to cache

the instruction itself, a uop cache is used to cache all decoded

results of an instruction. These results include operands and

the execution routine (� and � in Figure 7). By using a

uop cache, NEMU will fetch and decode an instruction only

when there is a uop cache miss (� and � in Figure 7).

To reduce the number of uop cache miss, NEMU further

organizes uop cache entries by trace, the dynamic instruction

sequence. For example, in Figure 7, the uop cache entries

with PC from 0x1000 to 0x100c are allocated sequentially (�
in Figure 7). The key idea is to completely eliminate conflict

misses by assigning an entry with a specific address. Note

that for a traditional instruction cache, different addresses

may be mapped to the same entry. Therefore, conflict misses

may occur and replacement is necessary. As a result, NEMU

has higher probability to stay in fast path, which in turn

reduces the number of fetch and decode. Note that the uop

cache will be flushed only when it is full, or there happens

a system event, such as context switch. These events are

infrequent during program execution.

Due to the trace organization, NEMU can fetch the next

uop cache entry inside a basic block by only adding 1 to upc
(� in Figure 7), which yields good locality. For unconditional

indirect jumps, a hash list is used to query the uop cache

entry by the target address (� in Figure 7). For unconditional

direct jumps and conditional branches, the block chaining

technique is employed. An example is the uop cache entry

with PC 0x2104 (a beq instruction), 	 in Figure 7. The

query of hash list is performed in decode stage, which is in

the slow path.

b) Writing to Zero Register: RISC architecture usually

defines a zero register, whose value is always 0. To implement

this feature, a traditional interpreter may check the destination

register before writing to GPR, or reset the value of the zero

register to 0 for every instruction. Instead, NEMU checks

whether an instruction is going to write the zero register in the

decode stage. If it is the case, the pointer of the destination

register (part of the decode results) stored in the uop cache

will be redirected to an unused variable (
 in Figure 7).

After that, the execution routine will write to the unused

variable, protecting the zero register from being overwritten.

c) Pseudo-Instructions and Compressed Instructions:
For a pseudo-instruction, there is usually at least one operand

which is constant or fixed. For example, ret is a special case

of jalr rd, imm(rs), where rd = zero (constant),

rs = ra (fixed), and imm = 0 (constant). For instructions

with such property, NEMU will define dedicated execution

routines to inline these operands (� in Figure 7). This

technique can be also applied to compressed instructions.

d) Floating-point Instructions: NEMU leverages host

floating-point instructions to interpret guest floating-point

instructions. For example, the execution routine of the
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Figure 8. The performance of Spike, QEMU-TCI, Dromajo and NEMU.

fadd.s instruction can be implemented by a ”+” with

float data type in C language, which will be compiled

to several host (x86) floating-point instructions. For some

complicated floating-point operations, NEMU will call the

math library. An example is to implement the fused multiply-

add instruction by calling the library function fma().

2) Evaluation: We compare NEMU with Spike [63]

(git commit 6c18ef56), QEMU-TCI (version 6.2.0) and

Dromajo [27] (git commit fae7b3a1). Among them, Spike

is the state-of-the-art RISC-V interpreter. QEMU-TCI is the

interpreter mode of QEMU [64]. Dromajo is the reference

model of BOOM. For the configuration of software cache

size, we run different size from 1024 to 32768 for Spike, and

select 16384 due to the best result. NEMU also adopts such

size for the uop cache. This size does not apply to Dromajo,

since there is no cache in Dromajo. We use the default cache

size for QEMU-TCI. We run these interpreters on a server

with Intel Core i9-9900K CPU.

SPEC CPU2006 benchmark suite is run with the test
input sets in user mode, where system calls are handled

by emulation. NEMU and QEMU-TCI have native support

for user mode by managing guest memory and forwarding

most of the system calls to the host operating system.

Spike supports user mode with the help of riscv-pk [65],

a proxy kernel module. Dromajo does not support user

mode by default. We enhance it in a way similar to

NEMU. We exclude 400.perlbench and 435.gromacs due

to unimplemented system calls in riscv-pk [66].

As shown in Figure 8, among Spike, QEMU-TCI and

Dromajo, Spike performs the best. For SPECint 2006, Spike

can achieve 142 MIPS (million instructions per second) on

average. Meanwhile, NEMU can finally achieve 733 MIPS

on average, which is about 5.16× of Spike. For SPECfp 2006,
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Figure 9. RISC-V Architectural Checkpoint Format.

Spike runs even slower, which only achieves 106 MIPS. This

is because Spike interprets a floating-point instruction by

calling SoftFloat [67]. By adopting the host floating-point

instruction, NEMU can achieve 817 MIPS for floating-point

benchmarks, which is about 7.71× of Spike, even 16× for

some benchmarks (410.bwaves).

3) Use Case of Checkpoint: MINJIE defines a RISC-V

ISA-level architectural checkpoint format with only basic

RV64 privilege instructions, as shown in Figure 9. When

compared with the existing publicly available checkpoint

format [27], our checkpoint format is independent of RISC-

V debug mode [68] and capable of enabling early-stage

processors without external debug features. As an exam-

ple, checkpoints of CoreMark-PRO [69] can be efficiently

generated using NEMU at a speed of >300 MIPS.

We further adopt SimPoint [70] to sample the instruction

fragments. Note that it is easy to compute the Basic

Block Vector in NEMU, since it is straightforward to

collect information about instructions in an interpreter. We

simulate the processor design with selected checkpoints

and calculate a weighted cycles per instruction (CPI) for

performance validation. This checkpoint-based evaluation

flow must address the issues of micro-architectural warming

and sampling representativeness [71] [72] [73] [74] [75].

During the warmup period, micro-architectural states in

components like branch predictors and caches are updated

by executing the instructions on the hardware. The future

work is to achieve better performance estimation accuracy

using less time and less computation resources.

By paralleling the software-based RTL-simulation in-

stances, a large number of checkpoints can be simulated

simultaneously. With five 128-core servers and ∼1K check-

points for 100% clustering coverage, we can estimate the

SPEC CPU2006 scores within three days. By contrast,

XIANGSHAN requires more than 150 hours to finish SPEC

CPU2006 programs on a single FPGA at 50MHz, with

roughly the same price as the five x86 servers. If we reduce

the clustering coverage to 80%, preliminary evaluation results

can be obtained within 24 hours. The accuracy of the

evaluation result will be demonstrated in Section IV-B.

E. Put It All Together

As shown in Figure 2, MINJIE integrates a set of

open-source tools to enhance the conventional verification

methodologies by proposing agile tools supporting functional

simulation of designs implemented by high-level languages,

efficient performance modeling and validation for both soft-

ware simulation and FPGA-based prototyping, and debugging

metrics across each step of the development flow.



Table II
TAPE-OUT MICRO-ARCHITECTURE PARAMETERS OF TWO GENERATIONS

OF XIANGSHAN: YQH AND NH.

Feature YQH NH
ISA RV64GC RV64GCBK

Process Node 28nm 14nm
Frequency 1.3GHz 2GHz

Core Number 1 2
microBTB 32 entries 256 entries

BTB 2K entries 4K entries
TAGE-SC 16K entries 16K entries

Others RAS RAS, ITTAGE
L1 ICache 16KB, 4-way 128KB, 8-way
L1+ Cache 128KB, 8-way -
L1 DCache 32KB, 8-way 128KB, 8-way

L2 Cache
1MB 8-way,

inclusive
1MB 8-way,
non-inclusive

L3 Cache -
6MB 6-way,
non-inclusive

L1 ITLB 40 entries 40 entries
L1 DTLB 40 entries 136 entries

STLB 4K entries 2K entries
Fetch Width 8*4B instr./cycle 8*4B instr./cycle

Dec./Ren. Width 6 instr./cycle 6 instr./cycle
ROB/LQ/SQ 192/64/48 256/80/64

Phy. Int/FP RF 160/160 192/192

Execution Units

ALU, MUL/DIV,
JUMP/CSR/I2F,

LD, ST,
FMAC, FMISC

ALU, MUL/DIV,
JUMP/CSR/I2F,
LD, STA, STD,
FMAC, FMISC

Instruction Fusion - Yes
Move Elimination - Yes

We have demonstrated in detail the functional verification

workflow. When new features are implemented, developers

only need to launch the RTL-simulation, and these tools

will be automatically invoked. If no errors are reported

from DiffTest, it is of high possibility that the design is

aligned with the design specification upon the corresponding

test cases, and performance results can be further analyzed.

Otherwise, LightSSS will extract the debugging information

including the waveform and logs. We develop and open-

source more debugging tools with better support for Chisel

(ArchDB, Waveform Terminator, etc.). They can be employed

by developers to further investigate potential bugs.

MINJIE also integrates the performance evaluation toolkit

for nightly performance regression. By selecting representa-

tive checkpoints, the time-to-results for accurate performance

verification is significantly reduced, further accelerating

design space exploration for high performance processors.

For now, MINJIE mainly adopts the RTL simulation-based

verification flow, which we believe is essentially complemen-

tary to workflows on emulators and FPGAs.

IV. BUILDING AN OPEN-SOURCE

HIGH PERFORMANCE PROCESSOR

To demonstrate the effectiveness of MINJIE, we use

it to build a high performance RISC-V processor named

XIANGSHAN. We have developed two major generations of

codenamed YQH and NH respectively since June 2020. This
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Figure 10. Micro-architecture of XIANGSHAN (NH).

section presents the micro-architecture details of XIANG-

SHAN and our experience with MINJIE and XIANGSHAN.

A. Micro-architecture

XIANGSHAN is a superscalar out-of-order RISC-V pro-

cessor with RV64GCBK ISA support. As the first step of

agile development, XIANGSHAN is implemented using Chisel

HDL [76] with a total line of code of ∼63K. The micro-

architecture parameters of both generations of XIANGSHAN

are shown in Table II. It is worth noting that most of the

design parameters are configurable based on given constraints

on timing, area and budget such as cache sizes, while Table II

illustrates the parameters that we use for tape-out with a

target frequency of 1.3GHz and 2GHz, for YQH and NH

micro-architecture, respectively.

The micro-architecture diagram of NH, the second gen-

eration of XIANGSHAN, is shown in Figure 10. It can be

seen that in the frontend, it features a decoupled style of

branch prediction unit (BPU) and instruction fetch unit (IFU),

where BPU runs ahead and provides sufficient instruction

fetch requests. XIANGSHAN uses a 4-table 16K-entry TAGE-

SC branch predictor with an indirect-jump predictor. In the

decode stage, macro-op fusion is utilized such that certain

consecutive arithmetic instructions can be fused into a single

micro-operation, in order to reduce the execution latency and

increase the effective size of various buffers such as re-order

buffer and issue queue.
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XIANGSHAN implements separated general-purpose regis-

ter file and floating-point register file. Move elimination is

enabled by a reference counting mechanism for the integer

physical registers. The reservation stations are distributed and

grouped as 32-entry or 16-entry smaller ones which issue

two or one instruction to the execution units in every clock

cycle. Floating-point multiply-add (FMA) instructions are

executed in the cascade FMA units [77] with a five-cycle

latency. FMA instructions are allowed for early execution

when the multiplication operands are ready, and being issued

again when the third operand is ready.

In the memory subsystem, the two load pipelines are

bank-interleaved. Stores are decoupled into data and address

micro-operations. The L1 DTLB has 128 direct-mapped

entries and 8 fully associative entries to ensure a larger

capacity without negatively impacting timing. XIANGSHAN

has a 128KB virtually-indexed physically-tagged (VIPT) L1

instruction cache and a VIPT 128KB L1 data cache. We

devise a hardware-based solution to address the aliasing

problem in large VIPT caches. Both the L2 cache and L3

cache are non-inclusive.

As the first version of XIANGSHAN, YQH was taped-

out on 28-nm CMOS technology in July 2021 with an

operating frequency at 1.3GHz. Table III lists the physical

implementation statistics for the CPU core. The layout of

Table III
PHYSICAL IMPLEMENTATION DETAILS OF YQH

Die Size 8.6 mm2

Std Cell Num/Area 5053679, 4.27 mm2

Mem Num/Area 261, 1.7 mm2

Density 66%

Cell ULVT 1.04%, LVT 19.32%,
SVT 25.19%, HVT 53.67%

Power 5W
Frequency 1.3 GHz, TT85°
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Figure 12. Measured and estimated SPECint 2006 and SPECfp 2006 scores
of the XIANGSHAN processor. It is worth noting that NH-FPGAs have
smaller LLCs than those on the simulation due to limited BRAM resources.

YQH chip and core are depicted in Figure 11.

As the second generation of XIANGSHAN, NH is a

dual-core implementation that will be taped-out at a target

frequency of 2GHz on 14-nm CMOS technology in Q4 2022.

The layout of NH is shown in Figure 11(d).

B. Performance

Figure 12 shows the performance evaluation results of the

XIANGSHAN processor with the SPEC CPU2006 benchmark

suite. It is compiled with an -O2 optimization flag with an

ISA of RV64GC for YQH and RV64GCB for NH. We use the

widely accepted SPEC/GHz metric [25] [78] [79], which is

proportional to IPC [6] [80], for the quantitative evaluation.

The YQH chip, as shown in Figure 11(c), was successfully

brought up in February 2022. Results (YQH-ASIC-DDR4-1600
in Figure 12) demonstrate that XIANGSHAN achieves 7.03

on SPECint 2006 and 7.00 on SPECfp 2006 at 1GHz.

Besides, we evaluate the performance of XIANGSHAN

on FPGA. With a fixed and average memory access time

(AMAT) of 90 clock cycles, YQH achieves normalized

6.87/GHz on SPECint 2006 and 7.23/GHz on SPECfp 2006.



With a 4MB last-level cache (LLC) and an AMAT of 250

cycles, NH achieves normalized 7.94/GHz on SPECint 2006

and 9.27/GHz on SPECfp 2006. To demonstrate how the

LLC size affects the performance and validate the 6MB

LLC statistics from simulation, we further evaluate NH with

a 2MB LLC. As shown in Figure 12, compared with NH-
2MBLLC-FPGA-250C-AMAT, NH-4MB-FPGA-250C-AMAT achieves

8.9% and 5.4% of performance increase on SPECint and

SPECfp respectively.

As discussed in Section II-E, DDR on FPGA runs at

1.6GHz while the CPU runs at 50MHz, resulting in an one-

CPU-cycle DDR access latency. Though we manually add

250 padding cycles to memory requests, the access latency

and bandwidth still do not match the real chips. On the FPGA

prototyping platform, most read and write requests have a

longer latency, while the memory bandwidth is unlimited.

Due to program characteristics and preferences of memory

latency, SPECint 2006 evaluation on FPGA is conservative.

In addition to hardware testing, we can also evaluate the

performance using software with the support of MINJIE.

Using the workflow as introduced in Section III-D3, we eval-

uate the performance of XIANGSHAN under RTL-simulation

environment with DDR4-2400. YQH reaches 7.67/GHz SPEC

score at 1.3GHz, while NH achieves 10.06/GHz SPEC score

at 2GHz. Compared with results from FPGAs and the real

chips, the proposed evaluation methodology using MINJIE

comes with a deviation of 5%∼10%. This is acceptable since

the memory configurations are inconsistent.

To the best of our knowledge, NH achieves the highest

performance of open-source RISC-V processors.

C. Debug with MINJIE

In this section, we demonstrate the effectiveness of MINJIE

using a bug during the regression testing of XIANGSHAN.

Though we have performed comprehensive unit testing for

L2 cache, this bug still escapes to the system-level testing.

This complicated bug is exposed when running the Redis

benchmark [81] on dual-core XIANGSHAN for over 168 hours

after 3B simulated cycles. DiffTest reports a data mismatch

between DUT and the Global Memory using the diff-rule

described in Section III-B2b. After that, the second to last

snapshot produced by LightSSS (Section III-C3) is activated

to re-run the RTL-simulation. It takes only 3 minutes to

simulate the last 30.8K cycles with waveform enabled.

The debugging stage starts with the ArchDB mentioned

in Section III-B3 that records transaction information in the

multi-level caches. We find that an Acquire [82] request

from L2 cache to L3 is overlapped with a Probe transaction

from L3 to L2 in the same cache block. Though L2 acquires

the correct data from L3, later it grants the wrong data

upward to L1, indicating a bug in the arbitration logic. Further

investigation into the waveform confirms that L2 MSHR

does not handle the overlapping correctly when Probe and

GrantData from L3 cache arrive at a specific time interval.

This case demonstrates how MINJIE benefits the verifica-

tion and debugging of a complicated processor. With DiffTest

for both single-core and multi-core scenarios, bugs can be

exposed when the processor runs real programs. LightSSS

greatly speeds up the bug reproducing, without which it may

take extra 16∼32 hours to dump the snapshots (with either

LiveSim or SSS). ArchDB and other tools further increase the

efficiency of hardware debugging. It is worth noting DiffTest

on FPGA may drastically improve the testing throughput,

which is an important future work of MINJIE.

D. Feature Exploration

In this section, we demonstrate the capabilities of MINJIE

and XIANGSHAN with a case study, and show that they

can be utilized as architecture innovation platforms for

agile hardware development and high-performance processor

research. On this platform, we implement and evaluate a

micro-architecture technique that is proposed in 2018 and

aims to improve the performance of out-of-order processors.

This case study aims to demonstrate that innovative ideas

can be easily realized and evaluated on XIANGSHAN, with

MINJIE significantly speeding up the development process.

1) Experimental setup: We use the Chisel language

and reuse basic utilities in the XIANGSHAN codebase to

implement the ideas. Our implementation may differ from

what the original paper presents for two reasons. One reason

is that the initial implementation is based on an architectural

simulator, which contains far fewer details than a real RTL-

level processor implementation. The other reason is that we

implement the idea mainly for a proof-of-concept and do not

intend to reproduce the same results as the original work. To

evaluate the idea, we select representative SPEC CPU2006

program checkpoints and simulate the RTL-code generated

by the implementations on XIANGSHAN using Verilator. The

evaluation is done on a 128-core x86 server.

2) Prioritizing unconfident branch slices: Modern pro-

cessors use branch prediction techniques to improve per-

formance, by either improving the prediction accuracy

or reducing the misprediction penalty. Meanwhile, OoO

processors have a large instruction window where ready

instructions can be scheduled regardless of the program order.

Different instructions have different impacts on the overall

performance, i.e., the criticality.

Various issue strategies have been proposed to issue critical

instructions first. Hideki Ando proposes the Prioritizing Un-

confident Branch Slices (PUBS) [83], targeting reducing the

branch misprediction penalty via a prioritized issue strategy.

The insight is to prioritize the issue of unconfident branch

instructions and the producer instructions for their operands.

Unconfident branch instructions are the instructions with

lower branch prediction accuracy. The producer instructions

affect when the branch instructions’ operands are ready. If

producer instructions can be issued as soon as possible, the

unconfident branches can be resolved earlier.
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Figure 13. The implementation process of PUBS on XIANGSHAN.

To track the unconfident branch instructions and issue

them with higher priority, PUBS contains four basic compo-

nents, including a confidence estimation table ConfTable,

a branch slice table BrSliceTable, a define table

DefTable and a prioritized issue policy PriorityIssue.

Every instruction looks up the BrSliceTable for its

correlated branch instruction and checks the prediction

confidence. If the confidence is low, this instruction is

assigned with a high priority. PUBS is originally implemented

and evaluated on the SimpleScalar simulator. Reported by the

paper, PUBS improves the performance by 7.8% for SPEC

CPU2006 programs whose branch mispredictions per kilo

instructions (MPKI) exceeds 3.0.

Using MINJIE platform, we implement PUBS on XI-

ANGSHAN by adopting the agile development methodology.

We decompose the task into four features, which can be

implemented iteratively, as shown in Figure 13. It takes less

than 200 minutes to implement the PUBS on XIANGSHAN

with approximately 300 lines of modified Chisel code.

To evaluate the performance of PUBS, we select repre-

sentative checkpoints from SPEC CPU2006 and run them

on XIANGSHAN with PUBS. Our first attempt is on ten

checkpoints of sjeng, which is identified as the program with

the highest speedup in the PUBS paper. We simulate 20M

instructions for warmup and the following 20M instructions

for performance profiling. AGE is used as the baseline in

this experiment; that is, the oldest instruction is scheduled

for issue with the highest priority.

As shown in Figure 14, we do not observe any visible

performance deviation for PUBS on sjeng, though the PUBS

paper reports a 6.5% IPC increase over baseline1. However,

this result is to some extent acceptable because we are using

the default configurations of XIANGSHAN, which are quite

different from the processor configurations used in the PUBS

paper. For example, XIANGSHAN adopts a larger instruction

window and a wider issue width, reducing the performance

impacts of the issue policy.

To confirm our conjecture that the larger issue width

on XIANGSHAN reduces the speedup, we look into the

detailed performance counters obtained from simulation.

XIANGSHAN implements a distributed issue queue, each

of which allows two ready instructions to issue at one

clock cycle. Figure 15 shows the time distribution of the

number of instructions that can be scheduled for issue. For

1The PUBS paper does not explicitly report the exact percentage of
increase. We use the average increase from the PUBS paper considering
that sjeng has the max increase of IPC.
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PUBS is disabled.

ten checkpoints of sjeng, the case when more than two

instructions can be issued occurs in 12.8% of the total cycles,

with an average number of blocking instructions at 0.215. In

the meantime, an average of 5.9% of total instructions are

labeled of high priority. Therefore, the average number of

blocking high-priority instructions is 0.215 × 5.9%. Besides,

the expected blocking cycles of an instruction is at most

0.168 assuming it is blocked at every cycle when there are

more than two ready instructions. Thus, approximately less

than 1.3% instructions can be scheduled earlier for one clock

cycle with PUBS. This small fraction of instructions and

fewer branch instructions would not bring significant IPC

improvement, matching the evaluation results in Figure 14.

We also evaluate PUBS with other checkpoints whose

MPKI exceeds 3 on more configurations of XIANGSHAN,

but does not observe visible performance improvements.

MINJIE enable developers to use their familiar workflow

as the architectural simulators, while being more accurate

by using cycle-exact RTL-simulators for a high performance

micro-architecture of XIANGSHAN. First, Chisel significantly

improves code density and programming efficiency. PUBS

takes only 300 lines of Chisel code, including the license

header, empty lines, and definitions for performance counters.

Second, DiffTest and LightSSS enable rapid functional

verification of the new features without breaking other parts.

For example, a potential issue in the modified issue policy

triggers an assertion caught by the DiffTest framework.

The simulation is then aborted but LightSSS restores the

recent snapshot and outputs debugging information. The

automated acquisition of information significantly speeds

up the debugging process. Third, representative checkpoints

from SPEC CPU2006 allow us to evaluate PUBS within

hours, and detailed performance counters can be acquired

from the simulation.



V. RELATED WORK

A. Hardware Description Languages

Most recently proposed hardware description languages

provide high-level design paradigms [84] [85]. Bluespec

SystemVerilog [86] proposes the guarded atomic actions that

allow the compiler to pick a scheduler for the hardware

manner and emit the optimized hardware design. Python-

based HDLs [87] [88] [89] provide parameterized hardware

structure descriptions in Python. Scala-based hardware con-

struction languages [76] [90] provide flexible object-oriented

and functional programming features. Chisel adopts the

FIRRTL [91] [92] intermediate representation to optimize the

circuits with customized circuit transforms. Both traditional

and emerging languages can be adopted on MINJIE.

B. Simulation and Hardware Verification

Hardware verification adopts both static and dynamic

approaches. Static and formal methods are able to prove

the theoretical correctness but have the limitation of state

space explosion [93], thus not being practical for large-scale

circuits. Dynamic RTL-simulation based verification is the

most commonly used tool, which can be further categorized

into correctness checking and generation of test cases.

Various frameworks have been proposed to increase the

efficiency of RTL-simulation and enhance the ability of

correctness comparison. FireSim [31] is an FPGA-accelerated

simulation technique running on public cloud to improve

usability and elasticity at a lower cost. On top of FireSim,

FirePerf [94] provides a set of system-level performance pro-

filing tools. Synthesizable assertion and print statements [35]

[38] have been implemented on FPGAs to address the

debuggability issues. Besides the FPGA approaches, software

based simulation is important for hardware verification and

some works have addressed its efficiency issue [95] [96].

Test generation schemes have been proposed for RISC-

V [97] [98] [99] [100] [101] and other processors, and they

work in parallel with the previously introduced frameworks.

Besides, fuzzing [102] [103] [104] and machine learn-

ing [105] based techniques have been adopted to effectively

generate higher-quality test cases to achieve better coverage.

For now, MINJIE and XIANGSHAN use the existing open-

source test generation frameworks.

C. Verification with New HDLs and RISC-V

Native verification frameworks for high-level HDLs like

Chisel [106] [107] [108] have been proposed to improve the

development agility. Mamba [109] proposes a just-in-time

compiler to directly simulate the high-level PyMTL code

that reaches a comparable performance of commercial HDL

simulators. These frameworks aim at providing high-level

interfaces for general-purpose verification without targeting

any specific design [110], which is orthogonal to MINJIE.

RiVer [111] provides a python based verification envi-

ronment and supports running tests and comparing results

with a valid reference model. However, RiVer does not

provide any implementation of the test generator and the

reference model. Dromajo [27] is the state-of-the-art co-

simulation framework for RISC-V processors and provides

Logic Fuzzer to achieve higher coverage. However, it relies

on deterministic architectural states during co-simulation and

manually sends the external interrupt to REFs, which is

the only identified source of divergence. By contrast, we

make a key observation that divergence is the norm of co-

simulation and propose the diff-rules to address the general

non-deterministic issues. Compared with Dromajo, MINJIE

identifies more sources of non-determinism and supports

more complicated co-simulation scenarios such as multi-core

and cache hierarchies.

D. Agile Development Platforms

Integrated and agile development platforms [8] [11] [12]

have been proposed for various purposes. Chipyard [7] is an

integrated SoC design, simulation framework including many

RTL generators such as BOOM [6] [112] and Hwacha [113]

and verification tools [114] [115]. Existing platforms and

tools have always been valuable for developers and MINJIE

adopts some of the existing development tools. This paper

promotes the research on agile development further on the

verification of complicated processors. The methodology and

tools proposed by MINJIE are complementary to the existing

works in the community.

VI. CONCLUSION

In this paper, we propose MINJIE, an agile development

platform for high performance chip designs, and XIANG-

SHAN, a high performance RISC-V processor. MINJIE

incorporates a broad set of tools for agile development

workflow. By adopting the agile approaches, XIANGSHAN

achieves industry-competitive performance with reduced

development cycles and limited efforts. We are working

towards the third generation of XIANGSHAN, code-named

KMH, which targets SPEC CPU2006 15/GHz at 3GHz. Both

MINJIE and XIANGSHAN are open-sourced.
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APPENDIX

A. Abstract

MINJIE is an open-source platform supporting agile

processor development. XIANGSHAN is a high performance

RISC-V processor developed with MINJIE. We demonstrate

the workflow for functional validation and performance

evaluation of XIANGSHAN with MINJIE, including tools

like DiffTest, LightSSS, NEMU, and RISC-V checkpoints.

B. Artifact check-list (meta-information)

• Hardware: x86-64 Ubuntu servers
• Experiments: (1) DiffTest on dual-core XIANGSHAN; (2)

debugging with LightSSS and evaluation of performance
overhead; (3) XIANGSHAN performance estimation with SPEC
CPU2006 checkpoints by RTL simulation; (4) evaluation of
PUBS on XIANGSHAN

• Code license: Mulan Permissive Software License, Version 2
• Archived: 10.5281/zenodo.7030506
• Online: Latest version maintained on GitHub

C. Description

XIANGSHAN and MINJIE are open-sourced at GitHub.

An archived version of the artifacts is provided at Zenode,

which is used as the example in this appendix.

Due to the proprietary issues, we cannot publicly provide

the full data set, such as the executable RISC-V checkpoints

generated with SPEC CPU2006 and source code for the

FPGA prototype.

D. Installation

1) Setup toolchain: Some packages are requried to build

XIANGSHAN and use MINJIE.

$ sudo -s ./A.5.1-difftest/setup-tools.sh
$ git clone \

https://github.com/OpenXiangShan/riscv-gnu-toolchain
$ # follow the README to install dependencies
$ cd riscv-gnu-toolchain && mkdir build && cd build
$ ../configure --prefix=PATH_TO_INSTALL \

--with-arch=rv64gc_zba_zbb_zbc_zbs
$ make linux -j16 && export PATH=$RISCV/bin:$PATH

E. Experiment workflow

1) DiffTest (Section III-B): We simulate dual-core XIANG-

SHAN with DiffTest, which checks the correctness on-the-fly

and reports any mismatch between the REF and XIANGSHAN.

We intentionally inject a fault into XIANGSHAN, which will

trigger a bug caught by the ”cache hierarchy and multi-core

scenarios” diff-rules (Section III-B2b).

$ cd A.5.1-difftest && source ./env.sh
$ bash build.sh && cd XiangShan
$ ./build/emu -i ../linux-4.18-smp-hello/bbl.bin \
--diff ./ready-to-run/riscv64-nemu-interpreter-dual-so\
2> /dev/null

2) LightSSS (Section III-C): First, we verify the functional

correctness of LightSSS, a simulation snapshot mechanism.

We simulate the dual-core XIANGSHAN with the same

workload as in the previous experiment. When the simulation

aborts, LightSSS will restore a snapshot (the child process

created by fork) and re-run the last several seconds of the

simulation to generate waveform and debugging logs.

$ ./build/emu -i ../linux-4.18-smp-hello/bbl.bin \
--diff ./ready-to-run/riscv64-nemu-interpreter-dual-so\
--enable-fork 2> simulator_stderr.txt

Second, we evaluate the performance overhead of LightSSS

to reproduce the results in Figure 6. We will evaluate

LightSSS with two configurations (single-core and dual-core).

$ cd A.5.2-lightsss && source ./env.sh
$ bash build_single_core.sh
$ bash test_single_core.sh | tee single_core.log
$ bash build_dual_core.sh
$ bash test_dual_core.sh | tee dual_core.log
$ python3 report_lightsss.py

3) NEMU (Section III-D): We evaluate the performance of

NEMU using the test input of SPEC CPU2006. We compare

its performance with Spike, QEMU-TCI, and Dromajo, whose

versions are shown at the top of the scripts.

$ cd A.5.6-NEMU && source ./env.sh
$ make -C NEMU/tools/regression run-riscv64-user
$ bash run_spike.sh
$ bash run_qemu_tci.sh
$ bash run_dromajo.sh

Second, we evaluate the performance of RISC-V check-

point generation by NEMUs.

$ cd A.5.3-performance && source ./env.sh
$ bash build_and_run_iss.sh

Third, we verify that NEMU is able to generate RISC-V

checkpoints using CoreMark-PRO as an example.

$ bash generate_checkpoints.sh

We also confirm that XIANGSHAN is able to restore and

run the generated RISC-V checkpoint.

$ bash build_xs_and_run_checkpoint.sh

4) XIANGSHAN (Section IV-B): Performance of the

XIANGSHAN processor in Figure 12 is evaluated on three

platforms, i.e., RTL-simulation, FPGAs, and chips.

Due to the specialized hardware and proprietary software

requirements, we cannot publicly share the data set now,

including the checkpoints used for performance evaluation.

However, we encourage to build SPEC CPU2006 from source

code and generate checkpoints with NEMU and SimPoint.



First, we use the pre-generated checkpoints for SPEC

CPU2006 to estimate the performance of YQH and NH.

$ cd A.5.4-XS && source ./env.sh
$ bash build_xs.sh
$ # all SPEC CPU2006 checkpoints
$ bash run_xs_checkpoints.sh
$ # namd checkpoints only
$ bash run_xs_checkpoints_namd.sh

To estimate performance of NH, run the above steps but

replace the directory with A.5.4-XS-NH.

Second, we use the FPGA platform to

evaluate the performance of YQH and NH. Use

A.5.4-XS-FPGA-YQH, A.5.4-XS-FPGA-NH-2MB,

and A.5.4-XS-FPGA-NH-4MB directories to reproduce

the performance data for YQH-FPGA-90C-AMAT, NH-
2MBLLC-FPGA-250C-AMAT, and NH-4MBLLC-FPGA-250C-AMAT
configurations.

$ cd DIR && source ./env.sh
$ bash build_xs.sh
$ bash run_fpga.sh

Third, we evaluate the performance of YQH chip using

SPEC CPU2006 benchmarks.

$ ssh root@172.28.2.145 # Private network only
$ cd spec2006-lite # SPEC CPU2006 wrapper
$ make run-all-ref | tee ./logs/run-all-ref.log
$ python3 scripts/report.py

5) PUBS (Section IV-D): We use sjeng checkpoints

from SPEC CPU2006 to evaluate PUBS, as shown in

Figure 14 and 15. There are three configurations, i.e., (1)

baseline, (2) AGE, and (3) AGE+PUBS on three directories

(A.5.5-PUBS-BASELINE, A.5.5-PUBS-AGE-ONLY,

A.5.5-PUBS). They are evaluated one by one.

$ cd DIR && source ./env.sh
$ bash build_xs.sh
$ bash run_xs_checkpoints.sh
$ bash report_xs_checkpoints.sh

F. Evaluation and expected results

1) DiffTest (Section III-B): DiffTest should abort with

”ICache Refill test failed”.

ICache Refill test failed!
addr: 8030c1c0
......
Seed=0 Guest cycle spent: 1,081,292
Host time spent: 664,997ms

2) LightSSS (Section III-C): DiffTest should abort and

LightSSS will generate the waveform (build/*.vcd) and

logs (simulator_stderr.txt).

ICache Refill test failed!
[FORK_INFO pid(x)] the oldest checkpoint start ...
[FORK_INFO pid(x)] dump wave to name.vcd...
......
Seed=0 Guest cycle spent: 1,081,292
Host time spent: 717,054ms

For the performance overhead evaluation, the simulation

time should remain stable across different snapshot intervals.

3) NEMU (Section III-D): First, we verify that NEMU

interprets the test input of bzip2 in SPEC CPU2006 at

around 1200 MIPS as in Figure 8. Performance of other

instruction set simulators are reported by the wrapper scripts.

Results demonstrate NEMU runs much faster than the others.

host time spent = 17,596,041 us
total guest instructions = 22,380,683,540
simulation frequency = 1,271,915,855 instr/s

Second, performance of NEMU used for checkpoints

is reported after 10B instructions. Expected to be large

than 300M instr/s. In total, 8 RISC-V checkpoints should

be generated at output_top/test/coremarkpro and

correctly run on XIANGSHAN.

host time spent = 31,238,591 us
total guest instructions = 10,000,000,005
simulation frequency = 320,116,870 instr/s

4) XIANGSHAN (Section IV-B): First, a script is available

to print the estimated scores for the RTL-simulation with

RISC-V checkpoints. Expected to be ∼7/GHz on YQH and

∼10/GHz on NH.

$ bash report_xs_checkpoints_30percent.sh

Second, run-time of the SPEC benchmarks are shown in

the serial port. The total SPEC scores are computed as the

GEOMEAN of the benchmarks. Expected to be ∼7/GHz on

YQH and ∼10/GHz on NH.

Third, we provide a Python script to report SPEC scores

on the YQH chip. Expected to be ∼7/GHz.

$ python3 scripts/report.py

5) PUBS (Section IV-D): Performance counters are

generated at sjeng_*.csv. Figure 14 is generated by

the global.IPC line. Figure 15 is generated by the

global.num_ready_frac_* lines.

G. Notes

Both XIANGSHAN and MINJIE are developed in the open-

source community. For now, due to the proprietary issues,

we cannot publicly share the full data set. However, we are

working on providing a publicly accessible version and will

share it on GitHub once we make it.
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[4] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz
et al., “The Rocket Chip Generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, 2016.

[5] C. Celio, P.-F. Chiu, K. Asanović, B. Nikolić, and D. Pat-
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